N°1

pro beam

PRO-BEAM GROUP

World-Leading Electron Beam Technology

pro beam

Electron Beam Welding Basics

Daniel Fritsche, IWE Head of Process Development

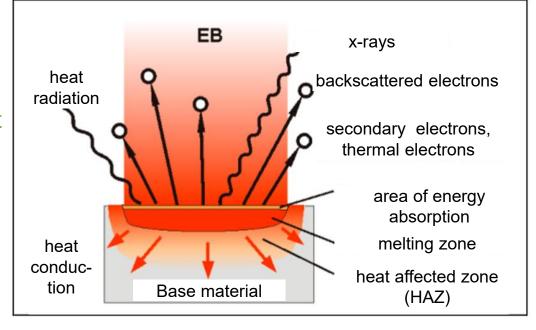
pro-beam GmbH & Co. KGaA September 2025

www.pro-beam.com

- a. EB Welding (beam material interaction, weldability of materials, ...)
- b. Design for EB welding (guidelines)
- c. Contract Manufacturing Burg (overview, K6000, large parts, deep welds, ...)
- d. Your Questions

pro beam

Electron Beam Welding

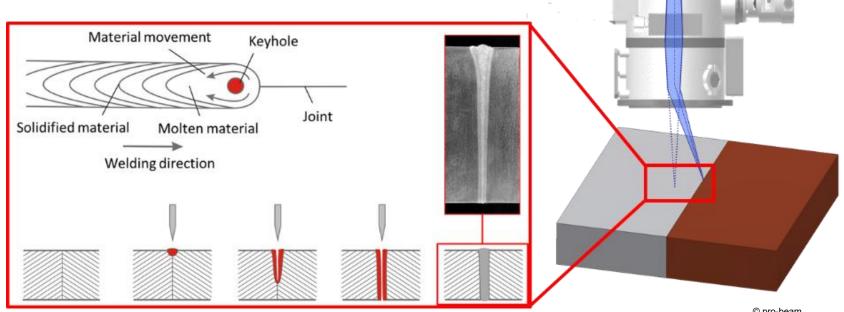

Beam Material Interaction

The electron beam causes the following interactions when hitting solid materials:

- Heat
- Backscattered electrons
- X-rays
- Secondary electrons
- Thermal electrons

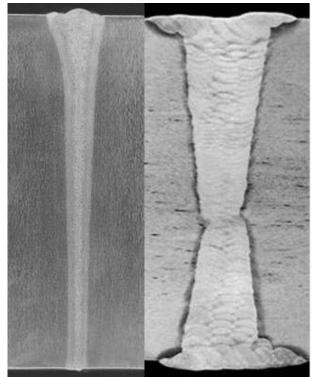
Mandatory for the process is the heat caused by the kinetic energy of the electrons

Usage especially for part positioning, process surveillance and documentation


Literatur:

Beam Material Interaction - Electron Beam Welding

pro beam


The advantages of EBW are based on the usage of the **Deep Welding Effect**:

- Electrons with high kinetic energy at 2/3 of the speed of light
- Focused on a small spot of approximative Ø 0,1 mm
- Melting and partially evaporating of the material to form a keyhole
- Narrow and almost parallel weld seams

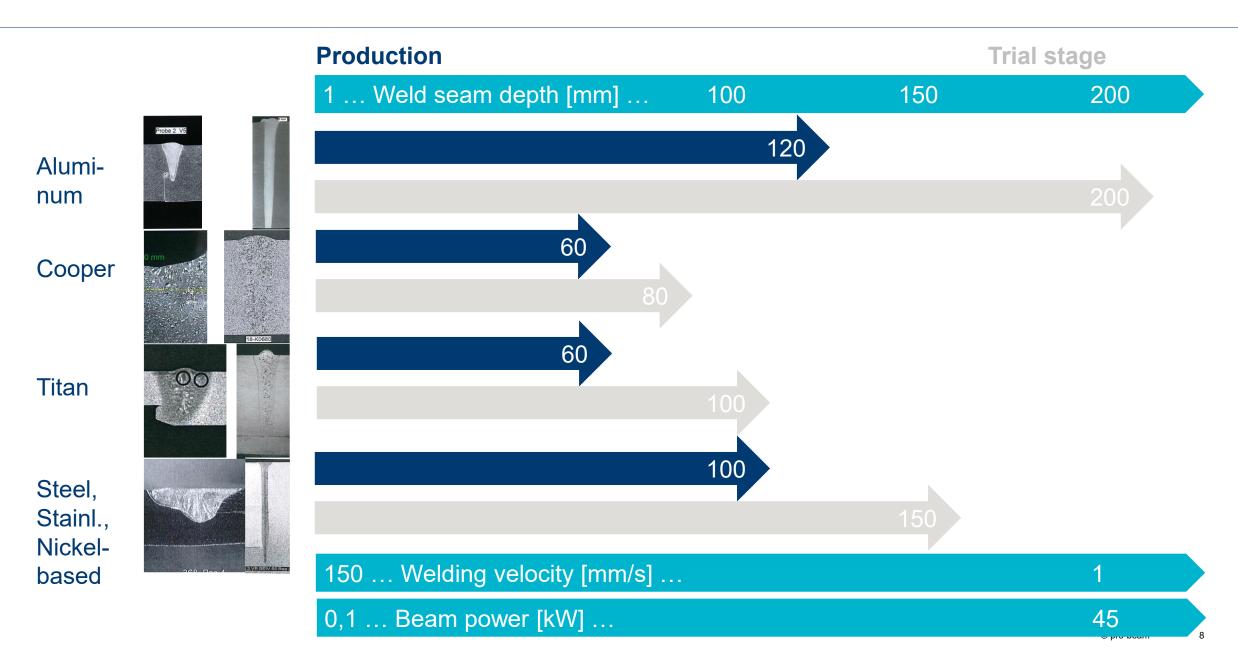
Electron Beam Welding Technology

- The deep welding effect allows extremely high welding depths compared to other welding technologies for all metallic materials (also copper)
- Economic advantages are generated by a combination of higher welding depth, higher welding speeds, less distortion and less processing effort

EB vs ARC (1:150 layers)

Mild steel

Stainless st.



Aluminum

Welding depth (one-pass)

pro beam

Suitable materials for electron beam welding:

Materials - iron-based:

- Non- and low-alloyed steels
- Mild steel
- Heat-resisting steel
- Quenched and tempered steel
- Case-hardening steel
- High-alloyed steel
- Stainless steel
- Duplex stainless steel
- High speed steel
- Cast iron

- ...

Materials - non-ferrous:

- Nickel / nickel-based alloys
- Aluminum
- Magnesium
- Copper / Alloys of copper
- Titanium
- Molybdenum
- Niobium
- Tantalum
- Tungsten
- Zirconium

- ...

Material processing Electron Beam

Ferritic / martensitic steels (including stainless steels) & iron

- Penetration depth of 0,1 mm up to 100 mm in one layer possible
- Based on the high cooling rate (typical for EB-welding) the toughness in the heat affected zone can be decreased
- Preheating / post heat treatment (e.g. by electron beam) can be necessary for steels with > 0,2% C
- Steel must be degaussed before EB-welding (approx. <2 Gauss)

Stainless steels (austenitic / austenitic - ferritic)

- Penetration depth of 0,1 mm up to 100 mm in one layer possible
- No issue with tempering colors because of the vacuum
- Be aware of discoloration due to metal-vapor
- Weld seams of austenitic steel have ultra high strength close to base material, especially in hot and cold environments like for cryogenic applications at 20K or lower

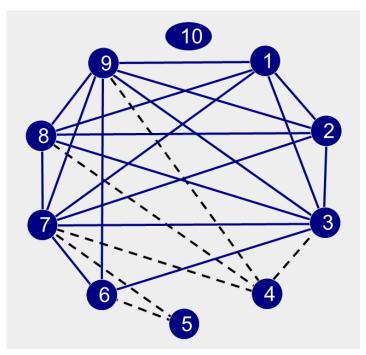
Material processing Electron Beam

Aluminum

- Penetration depth up to 120 mm in one layer without preheating possible
- Non-heat-treatable alloys like 1000 / 3000 / 5000 series are considered favorable for EB welding
- Heat-treatable alloys like 2000 / 6000 / 7000 series have limited weldability and can only be welded under specific conditions
- The weldability of 6XXX alloys is limited because they are prone to hot cracking, they should be welded with 4XXX filler material only
- The weldability of 7XXX alloys is limited due to their high tendency for hot cracking and the adverse effects of high zinc content, they should be welded with 5XXX filler material only

Copper / Alloys of copper

- Penetration depth of 1 mm up to 60 mm in one layer possible
- Preheating of copper for EB-welding not necessary
- Oxygen-free copper is favorized
- Alloys with zinc ("brass") are not weldable by EB-welding
- Alloys with tin, nickel, aluminum have good weldability
- Alloys with chromium and/or zirconium form hard, brittle intermetallic compounds, which remain insoluble in the base material > this can lead to crack initiation and reduced joint integrity


Nickel-based alloys

- Penetration depth of 0,1 mm up to 100 mm in one layer possible
- Be aware of 2 cracking phenomena: solidification* and liquation** hot cracking
- To avoid hot cracks the energy input should be minimized and the design should allow a free weldment shrinkage

- * Solidification hot cracking occurs during the final stages of weld pool solidification, when tensile stresses act on a weak interdendritic structure and low-melting constituents segregate at grain boundaries.
- ** Liquation hot cracking arises when low-melting phases in the heat-affected zone partially melt and resolidify under tensile stress, leading to crack formation along grain boundaries.

Suitable material combinations for electron beam welding:

suitable for welding together
suitable for welding under certain conditions
not suitable for welding together

Source: DVS Reference EB-Welding

- 1 Unalloyed and low alloyed low carbon steels, in particular structural steels, not free machining steels.
- 2 High alloy steels with high carbon contents.
- 3 High alloy very low carbon steels, in particular corrosion resistant steels.
- 4 Cast irons with lamellar or spheroidal graphite, black tempered cast iron.
- 5 Aluminum alloys except for those containing zinc.
- 6 Pure copper, low alloy copper.
- 7 Copper alloys except for those containing large amounts of zinc.
- 8 Nickel and nickel-based alloys.
- 9 Cobalt alloys except for hard materials containing large amounts of carbides.
- 10 Titanium and titanium alloys.

pro beam

Design for EB Welding

Mandatory rules are easy to find in DVS guidelines 3201 und standard DIN EN 1011-7.

Lizensiert für: pro-beam GmbH & Co. KGaA

April 2019

für Schweißen und verwandte Verfahren e. V.

Merkblatt DVS 3201

Ersetzt Ausgabe Mai 2001

Merkblatt DVS 3201

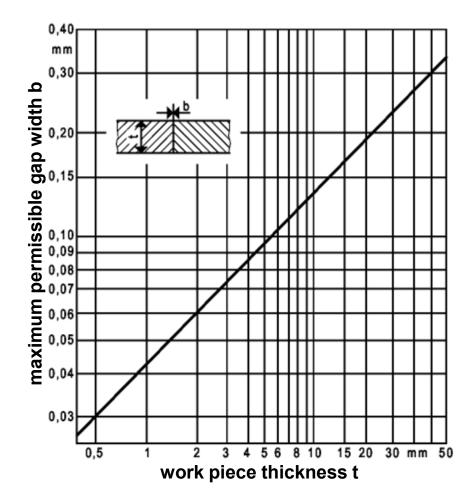
Grundsätze für das Konstruieren von Bauteilen für das Strahlschweißen im Grob-, Fein- und Hochvakuum

Ausschuss für Technik im DVS

Arbeitsgruppe V 9 "Strahlschweißen"

Untergruppe V 9.1 "Elektronenstrahlschweißen'

... Schweißtechnik Oktober 2004 **DIN EN 1011-7** DIN ICS 25.160.10 Empfehlungen zum Schweißen metallischer Werkstoffe -Teil 7: Elektronenstrahlschweißen: Deutsche Fassung EN 1011-7:2004 Welding -Recommendation 3 Richtlinien Part 7: Electron b German version E EN 1011-7:2004 (D) Soudage -Recommandation


C.2 Gruppeneinteilung für Aluminium und Aluminiumlegierungen

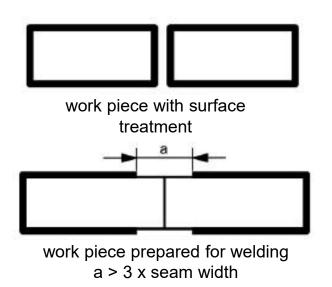
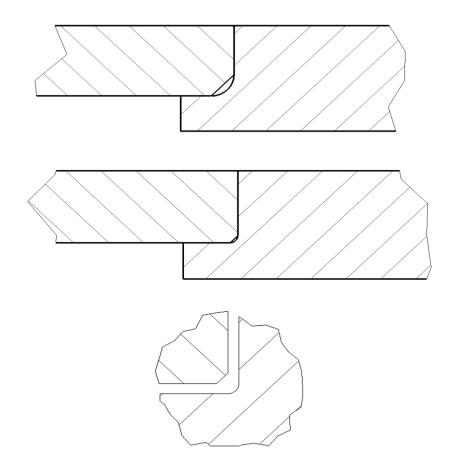
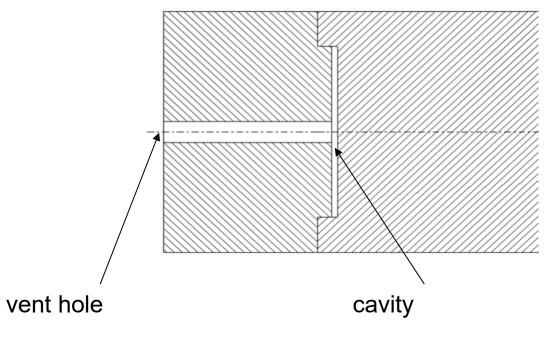

Aluminium und Aluminiumlegierungen sind wie in Tabelle C.2 aufgeführt eingestuft. Die angegebenen Daten beruhen auf die für die Bezeichnung der Legierungen verwendeten Elementgehalte.

Tabelle C.2 --- Gruppeneinteilung für Aluminium und Aluminiumlegierungen

Gruppe	Untergruppe	Aluminium und Aluminiumlegierungssorte	Schweißeig- nungsklasse
21		Reinaluminium mit ≤ 1 % Verunreinigungen oder Legierungsbestandteilen	ı
22		Nicht warmaushärtbare Legierungen	
	22.1	Aluminium-Mangan-Legierungen	1
	22.2	Aluminium-Magnesium-Legierungen mit Mg ≤ 1,5 %	ı
	22.3	Aluminium-Magnesium-Legierungen mit 1,5 % < Mg ≤ 3,5 %	II.
	22.4	Aluminium-Magnesium-Legierungen mit Mg > 3,5 %	1
		Warmaushärtbare Aluminiumlegierungen	

- "gap-less" for welding without filler material
- "clean" especially in the melting zone

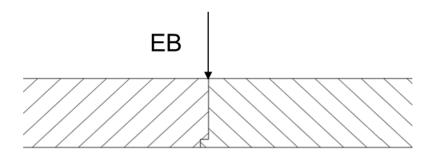

Prerequisites:

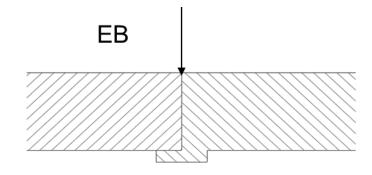

- Metallic blank
- Free of layers (rolling surface, hardening, nitried cases...)
- Free of grease, fat, oil, cooling fluids

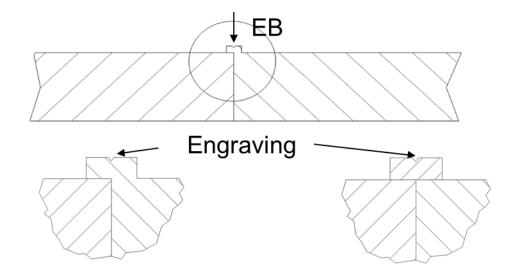
Design for Electron Beam Welding

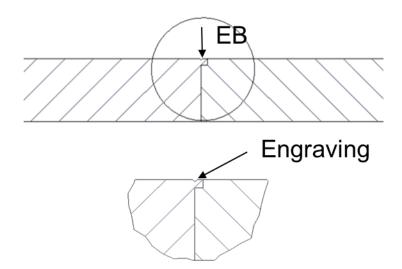
pro beam

- "no cavities" cavities must be vented or minimised
- typical combinations of fase and radius are 0,5x45° & R0,3

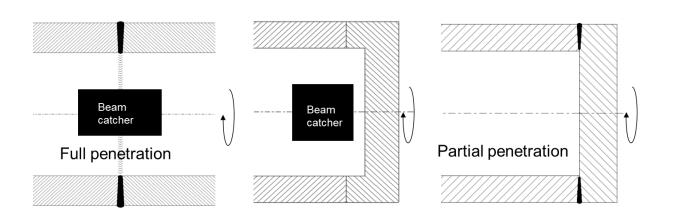


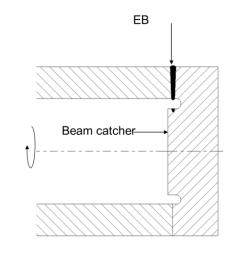



• butt weld: full penetration vs. partial penetration


Full penetration Partial penetration ΕB Backing stripe

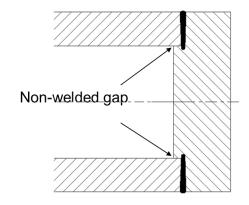
Centering lips: non-beam side (favorable) vs. beam side

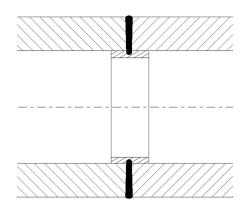


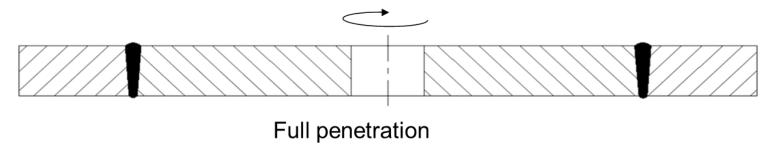


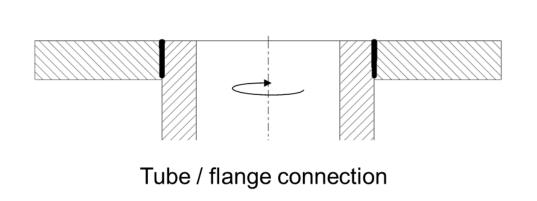
Design for Electron Beam Welding

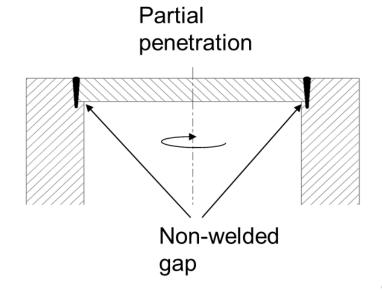
pro beam

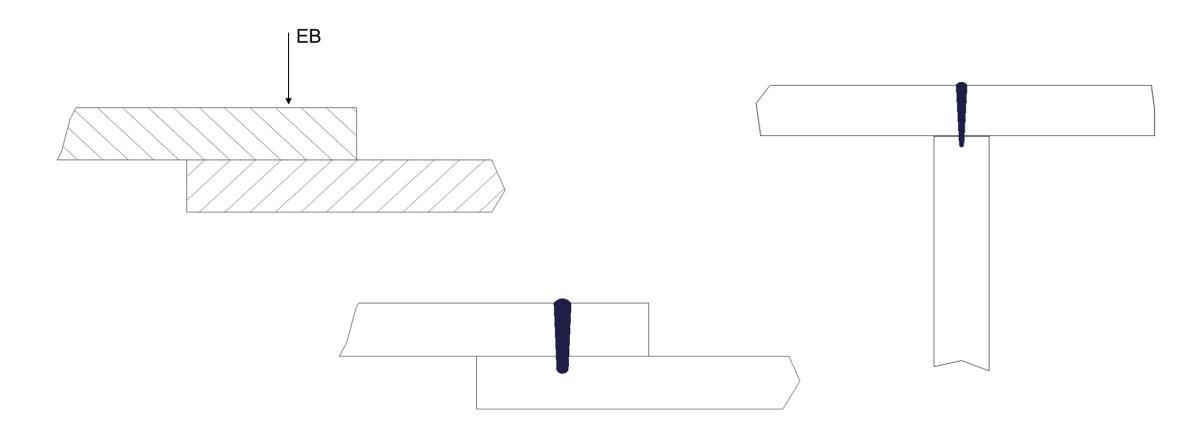

• Radial welds: allows free expansion and shrinkage

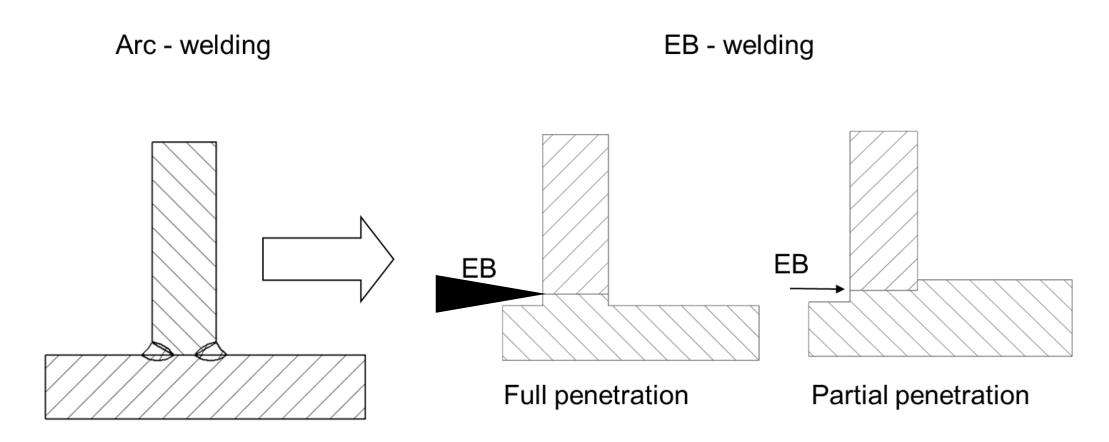





tube / flange connection




Axial welds: restricted expansion and shrinkage



Lap welds: full penetration through first plate into second plate and T-joint welds

• Example: Design adoptions for EB-Welding

pro beam

Thank you!

Daniel Fritsche, IWE Head of Process Development

pro-beam GmbH & Co. KGaA September 2025

www.pro-beam.com